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Abstract: Rough sets theory has been considered as a useful method to model the uncertainty and has been applied successfully
in many fields. And every rough set is associated with some amount of fuzziness. On the other hand, rough sets theory has been
generalized with coverings instead of classical partition. So it is necessary to consider the amount of fuzziness in generalized
rough sets induced by a covering. In this paper, a measure of fuzziness in generalized rough sets induced by a covering is
proposed. Moreover, some characterizations and properties of this measure are shown by examples, which is every useful in
future research works of generalized rough sets induced by a covering.
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1 INTRODUCTION

Various theories and methods have been proposed to deal
with incomplete and insufficient information in classifica-
tion, concept formation, and data analysis in data mining.
For example, fuzzy set theory[17], rough sets[7], comput-
ing with words[14,18,19], linguistic dynamic systems[13,14], and
many others, have been developed and applied to real-world
problems. The focus of this paper is on the rough set theory,
a tool originated by Pawlak[7] for data mining, with the par-
ticular intention to generalize it for the possible applications
in computing with words and linguistic dynamic systems for
modeling and analyzing complex systems and for data min-
ing.
Partition or equivalent relation, as the indiscernibility rela-
tion in Pawlak’s original rough set theory, is still restric-
tive for many applications. To address this issue, several
interesting and meaningful extensions to equivalent relation
have been proposed in the past, such as tolerance relations[4],
similarity relations[10], others[12,15,16]. Particularly, Zakowski
has used coverings a universe for establishing the covering
generalized rough set theory[20] and an extensive body of re-
search works has been developed[1,2,3,9]. The covering gener-
alized rough set theory is model with promising potential for
applications to data mining. In order to apply this theory to
data mining, we address some basic problems in this theory.
On the other hand, Dubios and Prade[21] combined fuzzy sets
and roughs sets in a fruitful way by defining rough fuzzy sets
and fuzzy rough sets. Banerjee and Pal[22] have character-
ized a measure of roughness of a fuzzy set making use of the
concept of rough fuzzy sets. They also suggested some pos-
sible applications of the measure in pattern recognition and
image analysis problems. Rough sets and fuzzy sets are also
studied by [23-27]. Hence, consideration of the amount of
fuzziness in covering generalized rough set is needed. This
paper discussed the problem mainly.
In this paper the main objective is to study the problem. A
measure of fuzziness in covering generalized rough sets is
introduced. Furthermore, some characterization and proper-
ties of this measure are got with examples, which is every
useful for next research works in covering generalized rough
sets.

2 FUNDAMENTALS OF FUZZY SETS AND
PAWLAK’S ROUGH SETS

The following recalls necessary concepts and preliminaries
required in the sequel of our work. Detail description of
them can be found in [17].
For a fuzzy set Ã, let denote α−cut and strong α−cut by
Ãα, Ãᾱ respectively, where 0 < α 6 1.
Definition 2.1 Let Ã be a fuzzy set. Then the nearest ordi-
nary set to Ã is denoted by N(Ã) and is given by

µN(Ã)(x) =





0, if µÃ(x) < 0.5
1, if µÃ(x) > 0.5
0 or 1, if µÃ(x) = 0.5

By convention, we take µN(Ã)(x) = 0 for the last case.
Thus, N(Ã) = Ã0.5, where Ã0.5 is the 0.5-cut of Ã.
Some properties concerning the nearest ordinary sets N(Ã)
and N(B̃) are summarized blew:
¬ N(Ã ∩ B̃) = N(Ã) ∩N(B̃);
 N(Ã ∪ B̃) = N(Ã) ∪N(B̃);
® |µÃ(x) − µN(Ã)(x)| = µÃ−ÃC (x) = |µÃ(x) −
µÃ0.5

(x)|.
where for any set X , |X| denotes the cardinality and XC the
complement of X respectively.
Definition 2.2 The index of fuzziness of a fuzzy set Ã hav-
ing n supporting points is defined as

vp(Ã) = (2/np) · d(Ã,N(Ã))

where d(Ã,N(Ã)) denotes the distance between the fuzzy
set Ã and its nearest ordinary set N(Ã). The value of p
depends on the type of distance function used. e.g. p = 1
for a generalized Hamming distance whereas p = 0.5 for
an Euclidean distance. When p = 1, v1(Ã) is called the
linear index of fuzziness of Ã, denoted by vl(Ã). When p =
0.5, v0.5(Ã) is called the quadratic index of fuzziness of Ã,
denoted by vq(Ã).
Next, we will review some basic concepts of Pawlak’s rough
set in brief which are used in next work.
Let U be a nonempty set and R be an indiscernibility relation
or equivalence relation on U . Then (U,R) is called a Pawlak
approximation space.
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Definition 2.3 For any non-empty subset X of U , the sets

R(X) = {x ∈ U |[x]R ⊆ X}

and
R(X) = {x ∈ U |[x]R ∩X 6= φ}

are, respectively, called the lower and upper approximation
of X in (U,R), where [x]R denotes the equivalence class of
the relation R containing the element x.
Using lower and upper approximation, an equivalence rela-
tion ≈R can be defined on the power set of U :

X ≈R Y ⇔ R(X) = R(Y ) and R(X) = R(Y )
where X, Y ∈ 2U , and R is a covering of U .
In addition, this equivalence relation induces a partition on
the power set 2U . Pawlak regards the group of subsets of
U with the same upper and lower approximations in (U,R).
Moreover specially, the concept is:
Definition 2.4 Given the Pawlak approximation space
(U,R) and two sets A1, A2 ∈ U , with A1 ⊆ A2, a Pawlak
rough set is the family of subset of U described as follows:

R(X) = (A1, A2) = {X ∈ 2U |R(X) = A1, R(X) = A2}

Equivalently, a Pawlak rough set containing X ∈ 2U can be
defined as:

[X]≈R
= {Y ∈ 2U |R(X) = R(Y ), R(X) = R(Y )}

In other words,

[X]≈R
= (R(X), R(X))

If R(X) = R(X), X is said to be exact.
For a fixed non-empty subset X of U , the rough set of X
i.e. R(X) is unique. Moreover, there are many properties
about rough sets, we omitted them for simplification here,
and which can be found in [5-7].

3 CONCEPTS AND PROPERTIES OF COVER-
ING GENERALIZED ROUGH SETS

In this section we will list some definitions and results about
covering rough sets used in this paper [1,3,9].
Definition 3.1 Let U be a universe of discourse, C a family
of subsets of U . If none subsets in C is empty, and ∪C = U ,
C is called a covering of U .
It is clear that a partition of U is certainly a covering of U ,
so the concept of a covering is an extension of the concept
of a partition.
In the following discussion, the universe of discourse U is
considered to be finite.
Definition 3.2 Let U be the universe, and C a covering of
U . We call the ordered pair S = (U, C) a covering approxi-
mation space.
Definition 3.3 Let S = (U, C) be a covering approximation
space. For u ∈ U , set family

Md(u) = {K ∈ C|u ∈ K ∧ (∀H ∈ C ∧ u ∈ H ∧H ⊆ K

⇒ K = H)}
is called the minimal description of u.

Consider a covering approximation space S = (U, C). Simi-
larly to Pawlak approximation space, we interpret the cover-
ing as a collection of known concepts. Every set X ⊆ U is a
set of examples of some concept (know or un known). Hence
to calculate the lower approximation of X , we must find the
family of known concepts included in X . To calculate the
upper approximation of X , we must find known concepts
having at least one example in X that is not an example of
another known concept included in X .
Definition 3.4 For a set X ⊆ U , set family SC(X) = {K ∈
C|K ⊆ X} is called the covering lower approximation set
family of X .
Set C(X) = ∪SC(X) is called the covering lower approxi-
mation of X .
Set family Bn(X) = {Md(x)|x ∈ X −C(X)} is called the
covering boundary approximation set family of X .
Set family SC(X) = SC(X)∪Bn(X) is called the covering
upper approximation set family of X .
Set C(X) = ∪SC(X) is called the covering upper approxi-
mation of X .
Using covering lower and upper approximation, an equiva-
lence relation ≈C can be defined on the power set of U :

X ≈C Y ⇔ C(X) = C(Y ) and C(X) = C(Y )
where X, Y ∈ 2U , and C is a covering of U .
In addition, this equivalence relation induces a partition on
the power set 2U . An equivalence class of such partition is
called a covering generalized rough set. Moreover specially,
the concept can be defined as:
Definition 3.5 Given the covering approximation space
S = (U, C) and two sets A1, A2 ∈ U , with A1 ⊆ A2, a
covering generalized rough set is the family of subset of U
described as follows:

C(X) = (A1, A2) = {X ∈ 2U |C(X) = A1, C(X) = A2}

Equivalently, a covering generalized rough set containing
X ∈ 2U can be defined as:

[X]≈C = {Y ∈ 2U |C(X) = C(Y ), C(X) = C(Y )}

In other words,

[X]≈C = (C(X), C(X))

If C(X) = C(X), X is said to be exact.
From the flowing Proposition, we can find that a covering
generalized rough set will become a classical rough set when
the covering is restricted a partition.
Proposition 3.1 If C is a partition, C(X) and C(X) are the
Pawlak’s lower and upper approximations of X .
Corresponding the properties of Powlak’s rough set, cover-
ing generalized rough sets have the following results.
Proposition 3.2 For a covering C, the covering lower and
upper approximations have the following properties:
¬ C(U) = U ; C = U

 C(φ); C = φ

® C(X) ⊆ X; X ⊆ C(X)
¯ C(C(X)) = C(X); C(C(X)) = C(X)
° X ⊆ Y ⇒ C(X) ⊆ C(Y )
± ∀K ∈ C, C(K) = K, C(K) = K
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4 FUZZINESS IN COVERING GENERALIZED
ROUGH SETS

Let S = (U, C) be a covering approximation space and sup-
pose X ⊆ U . In the covering C, the rough set of X is say
C(X) = (C(X), C(X)). Thus in the space S = (U, C), the
set X is approximated by two approximations, one from the
inner side called the lower approximation of X , and another
from the outer side called the upper approximation of X .
Definition 4.1 For an element u ∈ U and the rough set of
X , C(X) = (C(X), C(X)), degree of rough belongingness
of u in X , denoted by D(u,X), is defined by

D(u,X) =
|(∪Md(u)) ∩X|
| ∪Md(u)|

Clearly, ∀u ∈ U,D(u,X) ∈ [0, 1]. Hence, this immediately
induces a fuzzy set F̃ CX of U and membership function of

F̃ CX is given by

µgFCX
(u) =

|(∪Md(u)) ∩X|
| ∪Md(u)|

Definition 4.2 The fuzziness in the rough set C(X) of X
is denoted by fCX and is defined by the amount of fuzzi-
ness present in the fuzzy set FC

X . The amount of fuzziness
can be measured by a suitable index of fuzziness (linear or
quadratic). The linear and the quadratic indices of fuzziness
of the rough set F̃ CX are respectively called the linear fuzzi-
ness and the quadratic fuzziness of rough set C(X). They
are denoted by (fCX)l and (fCX)q, respectively.
Example 4.1 Given an information table T based on an
dominance relation in Tab.1.

Tab. 1
U ×A a1 a2 a3

x1 1 2 1
x2 3 2 2
x3 1 1 2
x4 2 1 3
x5 3 3 2
x6 3 2 3

Here, U = {xi; i = 1, 2, · · · , 6} is a non-empty finite set of
objects and A = {a1, a2, a3} denotes the set of attributes.
And dominance relation R6

A of information table T is de-
fined by

R6
A = {(xi, xj) ∈ U × U : fl(xi) 6 fl(xj),∀al ∈ A}

where fl(x) is the value of al on x ∈ U . Moreover if we
denote

[xi]
6
A = {xj ∈ U : (xi, xj) ∈ R6

A}
= {xj ∈ U : fl(xi) 6 fl(xj),∀al ∈ A}

then from Tab.1 we can see

C1 = [x1]
6
A = {x1, x2, x5, x6}

C2 = [x2]
6
A = {x2, x5, x6}

C3 = [x3]
6
A = {x2, x3, x4, x5, x6}

C4 = [x4]
6
A = {x4, x6}

C5 = [x5]
6
A = {x5}

C6 = [x6]
6
A = {x6}

and Ci 6= φ;∪Ci = U, i = 1, 2, · · · , 6. So C is a covering of
U and S = (U, C) is a covering approximation space. In ad-
dition, the figure of the covering of S in Table 1 is following.
Moreover, we can know: Md(xi) = Ci, (i = 1, 2, · · · , 6) by
term of the following figure(Fig.1).

1
x

2
x

3
x 3

C
4

C

1
C

2
C

5
C

5
x 6

C
6

x
4

x

Fig.1 Covering of S in Tab.1

Now let’s consider a subset X = {x1, x3, x4, x5} of U .
It is easy to obtain SC(X) = C5. So we have C =
C5. On the other hand, we can calculate Bn(X) =
{Md(x1),Md(x3),Md(x4)} = {x1, x2, x3, x4, x5, x6} =
U . That is to say C = U . Therefore the rough set of X is
C(X) = (C5, U).
By above definitions we can obtain

µgFCX
(x1) = 1/2, µgFCX

(x2) = 1/3, µgFCX
(x3) = 3/5

µgFCX
(x4) = 1/2, µgFCX

(x5) = 1, µgFCX
(x6) = 0

Hence,

F̃ CX =
{

1
2
/x1,

1
3
/x2,

3
5
/x3,

1
2
/x4, 1/x5, 0/x6

}

In another way we know

N(F̃ CX) = {0/x1, 0/x2, 1/x3, 0/x4, 1/x5, 0/x6}
Thus the linear fuzziness in the rough set C(X) is

(fCX)l = (2/6) · d(F̃ CX , N(F̃ CX))

=
1
3
· (1

2
+

1
3

+
2
5

+
1
2
)

= 0.5778

where d(F̃ CX , N(F̃ CX)) denotes the Hamming distance be-
tween them.
And the quadratic fuzziness in the rough set C(X) is

(fCX)q = (2/
√

6) · d(F̃ CX , N(F̃ CX))

= (2/
√

6) ·
√

1
4

+
1
9

+
4
25

+
1
4

= 0.62960
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where d(F̃ CX , N(F̃ CX)) denotes the Euclidean distance be-
tween them.
Next, we will discuss some properties of the measure of
fuzziness in covering generalized rough set.
Proposition 4.1 Let S = (U, C) be a covering approxima-
tion space. The following always holds:
¬ (fCU )l = 0;
 (fCφ )l = 0;
® (fCU )q = 0;
¯ (fCφ )q = 0.
Proof Here we prove only (1). Proofs of the rest are similar
and we omitted them.
For any u ∈ U , we have

µfFCU
(u) =

|(∪Md(u)) ∩ U |
| ∪Md(u)| =

| ∪Md(u)|
| ∪Md(u)| = 1

Therefore, µfFCU∩(fFCU )C
(u) = 0, where (F̃ CU )C denotes the

complement of the fuzzy set F̃ CU . Hence, (fCU )l = (2/n) ·
d(F̃ CU , N(F̃ CU )) = (2/n) · ∑ |µfFCU (u) − µ

N(fFCU )
(u)| =

(2/n) ·∑µfFCU∩(fFCU )C
(u) = 0.

Thus the proof is completed.
Proposition 4.2 The fuzziness in an exact set of a covering
approximation space is 0.
Proof Let C(X) = (X, X) be an exact set of a covering
approximation S = (U, C). Then, for any u ∈ U we have

µgFCX
(u) =

|(∪Md(u)) ∩X|
| ∪Md(u)| =

| ∪Md(u)|
| ∪Md(u)| = 1

And for each u ∈ U − X , Md(u) ∩ X = φ. Therefore
for any u ∈ U − X ,µgFCX

(u) = 0. Hence we have fCX =

(2/np) · d(F̃ CX , N(F̃ CX)) = (2/np) ·∑µgFCX∩(gFCX)C
(u) = 0.

The proof is completed.
Proposition 4.3 For any two sets X and Y in a covering
approximation space S = (U, C), if X ⊆ Y, then F̃ CX ⊆
F̃ CY .
Proof Obviously, for any u ∈ U , X ⊆ Y implies
|(∪Md(u)) ∩X| 6 |(∪Md(u)) ∩ Y |. So we have

|(∪Md(u)) ∩X|
| ∪Md(u)| 6 |(∪Md(u)) ∩ Y |

| ∪Md(u)|

That is to say µgFCX
(u) 6 µfFCY

(u). Thus F̃ CX ⊆ F̃ CY .
The proposition is proved.
Proposition 4.4 For any set X in a covering approximation
space S = (U, C), (F̃ CX)C = F̃ C

XC holds.
Proof For any u ∈ U , we have

µgFCX
(u) + µ gFC

XC

(u)

=
|(∪Md(u)) ∩X|+ |(∪Md(u)) ∩XC |

| ∪Md(u)|
=

| ∪Md(u)|
| ∪Md(u)| = 1

Hence, it is proved.

Proposition 4.5 For any two sets X and Y in a covering
approximation space S = (U, C), the following holds:

¬ F̃ CX∪Y ⊇ F̃ CX ∪ F̃ CY ;

 F̃ CX∪Y = F̃ CX ∪ F̃ CY , if either X ⊆ Y or Y ⊆ X .
Proof ¬ For any u ∈ U , we have

µ
F̃CX∪Y

(u) =
|(∪Md(u)) ∩ (X ∪ Y )|

| ∪Md(u)|
=

|((∪Md(u)) ∩X) ∪ ((∪Md(u)) ∩ Y )|
| ∪Md(u)|

> max{|((∪Md(u)) ∩X)|, |((∪Md(u)) ∩ Y )|}
| ∪Md(u)|

= max{ |((∪Md(u)) ∩X)|
| ∪Md(u)| ,

|((∪Md(u)) ∩ Y )|
| ∪Md(u)| }

= max{µgFCX (u), µfFCY
(u)}

= µgFCX∪fFCY
(u).

Thus completed.
 Straightforward.
In a similar way, the following proposition can be obtained.
Proposition 4.6 For any two sets X and Y in a covering
approximation space S = (U, C), the following holds:

¬ F̃ CX∩Y ⊆ F̃ CX ∩ F̃ CY ;

 F̃ CX∩Y = F̃ CX ∩ F̃ CY , if either X ⊆ Y or Y ⊆ X .

5 CONCLUSIONS

It is well-known that rough set theory has been regarded as
a generalization of the classical set theory in one way. Fur-
thermore, this is an important mathematical tool to deal with
vagueness. As a natural need, it is a fruitful way to com-
bine fuzzy sets and rough sets by defining rough fuzzy sets
and fuzzy rough sets. In addition, it is necessary to combine
fuzzy sets and covering generalized rough sets. In the paper,
a measure of fuzziness in covering generalized rough set is
introduced, and some basic properties is considered. More-
over, some characterization of this measure are made with
examples.
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